PHYSICAL REVIEW A

VOLUME 36, NUMBER 8

Superfluid plasmas: Multivelocity nonlinear hydrodynamics of superfluid solutions

with charged condensates coupled electromagnetically

Darryl D. Holm

Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, University of California,

Los Alamos, New Mexico 87545

Boris A. Kupershmidt
The University of Tennessee Space Institute, Tullahoma, Tennessee 37388-8897
(Received 10 November 1986)

Four levels of nonlinear hydrodynamic description are presented for a nondissipative multicon-
densate solution of superfluids with vorticity. First, the multivelocity superfluid (MVSF) theory is
extended to the case of a multivelocity superfluid plasma (MVSP), in which some of the superfluid
condensates (protons, say) are charged and coupled electromagnetically to an additional, normal,
charged fluid (electrons). The resulting drag-current density is derived due to the electromagnetic
coupling of the condensates with the normal fluids. For the case of one charged condensate, the
MVSP equations simplify to what we call superfluid Hall magnetohydrodynamics (SHMHD) in
the approximation that displacement current and electron inertia are negligible, and local charge
neutrality is imposed. The contribution of the charged condensate to the Hall drift force is deter-
mined. In turn, neglecting the Hall effect in SHMHD gives the equations of superfluid magne-
tohydrodynamics (SMHD). Each set of equations (MVSF, MVSP, SHMHD, and SMHD) is
shown to be Hamiltonian and to possess a Poisson bracket associated with the dual space of a cor-
responding semidirect-product Lie algebra with a generalized two-cocycle defined on it. Topologi-
cal conservation laws (helicities) associated with the kernels of these Lie algebras are also dis-
cussed as well as those associated physically with generalized Kelvin theorems for conservation of
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superfluid circulation around closed loops moving with the normal fluid.

INTRODUCTION

In a solution of *He atoms in liquid *“He at a
sufficiently low temperature, a phase transition to
superfluidity can occur via Cooper pairing of the *He
Fermi particles. At temperatures below the phase-
transition point, two types of condensate and, conse-
quently, two types of superfluid will exist simultaneous-
ly. The hydrodynamics of such a solution can be de-
scribed by a three-fluid model, with two superfluid veloc-
ities and one normal-fluid velocity. These equations
have been derived by Andreev and Bashkin,! with al-
lowance for dragging of the *He component by the “He
flow. The three-fluid hydrodynamic equations have also
been studied by Khalatnikov,? Galasiewicz,” Mineev,*
and Volovik, Mineev, and Khalatnikov.” More exotic
systems having two superfluid condensates may also ex-
ist, e.g., in the ‘“prephase” of neutron stars (Ambart-
sumyan and Saakyan®) in which Cooper pairs are formed
as a result of hadronic interactions at high density
(Ginzburg”).

Another example of such a system with two conden-
sates consists of a solution of protons and neutrons dis-
tributed as impurities in a heavy-metal matrix (Lowy
and Woo®). Such a system has the properties of a quan-
tum crystal, due to the large mass difference between the
impurity particles and the matrix atoms (Andreev and
Lifshitz’). Under certain conditions, the neutron-proton
impurities can undergo a phase transition to a supercon-
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ducting state, again via formation of Cooper pairs
(Gelikman,'? referenced in Vardanyan and Sedrakyan'!).

In this paper we first discuss the Hamiltonian struc-
ture of the ideal multifluid hydrodynamic equations for
multivelocity superfluid (MVSF) theory. Then, reason-
ing based on this Hamiltonian structure allows us to ex-
tend the MVSF equations to a multivelocity plasma
(MVSP) model, by allowing some of the condensates to
be charged (as in the case of neutron and proton conden-
sates) and interact electromagnetically with an additional
charged normal component (e.g., electrons). Next, we
introduce a superfluid Hall magnetohydrodynamic ap-
proximation (SHMHD, including the Hall electric field
induced by currents flowing transversely to the local
magnetic field). This approximation applies to the mul-
tivelocity superfluid plasma system in the case of only
one charged condensate in a neutralizing background
normal fluid. This is derived by neglecting displacement
current and electron inertia in the MVSP equations, and
imposing local charge neutrality (which is dynamically
preserved). The MVSP analysis yields the drag-current
density [see Eq. (24)] due to the coupling of the conden-
sates with the normal fluids, as well as the dynamics of
the neutron and proton vortices. The SHMHD analysis
reveals the contribution of the charged condensate to the
Hall field [see Eq. (34)]. Neglecting the Hall field in the
superfluid Hall magnetohydrodynamics (SHMHD) equa-
tions finally results in the equations of superfluid magne-
tohydrodynamics (SMHD).
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For each of these four Hamiltonian systems (MVSF,
MVSP, SHMHD, SMHD), additional conservation laws
exist due to the noncanonical nature of their Poisson
brackets. These Poisson brackets are associated in the
text to the dual spaces of Lie algebras of semidirect-
product type. The nontrivial kernels of these Lie alge-
bras correspond to conservation laws existing for any
Hamiltonian that may be expressed in the space of phys-
ical variables for each system. These additional conser-
vation laws are helicities (topological winding numbers
of superfluid vortex lines) that derive from generalized
Kelvin theorems describing conservation of superfluid
circulation around any closed loop that moves with the
normal fluid.

MULTIVELOCITY SUPERFLUIDS

The equations of multivelocity hydrodynamics of
superfluid solutions in the absence of dissipation are
given in the following form (cf. Andreev and Bashkin,'
who consider the case of two condensates, labeled by
a=1,2),

9,pe=—div(pev, +P,), a=1,2,...,m (1a)
3, Pi=—0mk, i,k=12,...,N (1b)
9,8 = —div(Sv,), (1c)
9, vi=—V(u*—lvl4+v, v’ +v, Xcurlv® , (1d)

where the three-dimensional vector notation in Eq. (1) is
expressible in N-dimensional component notation as,

e.g.,

(v, Xecurlv®); =v] (v —v®) fori,j=12,...,N .

n (la)-(1d) the quantities p,, a=1,2,...,m, are the
mass densities of condensate particles of each kind. The
total mass density p of the condensates in solution is
equal to the sum over species, p=73 ,p,. The quantities
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total momentum density is denoted

P=pv,+ 3P,
a

n (1b), and S is the entropy density in (1c). Equation
(1d) reduces to the usual single-fluid motion equation
when v®=v,, and all the fluids move together.

The interpretations of the other quantities in (1)
u% P,, and the temperature 7 may be obtained from the
following thermodynamic derivative identity (first law of
thermodynamics) for the internal energy density of the
solution ¢ in the Galilean frame in which v, =0:

de=TdS+ 3 [udpa+P,d(vi—v,)] . 2)
a

The total energy density in the laboratory frame is equal
to

E=1lpvl+ [EP,, “V,+e (3a)
a
=—1pvI+P-v, +e. (3b)
The momentum flux tensor 7~ in (1b) has the form
mi=p8f+ 3 wfPE)+Pus, (@)
B
where the pressure p is defined by the Euler relation,
p=—t+ > (u%p,)+TS . (5)
a

Equations (la)-(1d) comprise a Hamiltonian system,
which can be written in the form 9d,F
={H,F},FE{pyVv®S,P;}, with Hamiltonian H given
by

H= [ d¥%(—1pp2+P-v,+e), (6)

where the integrand is obtained from (3b) and N is the
dimension of ‘space, with volume element d”x. (Physi-
cally, N =3; however, we prefer to keep N arbitrary for
mathematical convenience and transparency of expres-

v, and v% a=1,2,...,m are, respectively, the veloci- sions in component notation.) The variational deriva-
ties of the normal flow and the m superfluid flows. The tives of H in (6) are found upon using (2) to be
J
sH= [ d¥ Iz(ya—gu,%)sp,,+ras+ S P8V +v, 8P+ [P— {zPa]——pvn ]-Sv,, ] . 7
a a a

The Poisson bracket {,
ming on repeated indices)

} in terms of which Egs. (1a)-(1d) are expressible in Hamiltonian form is given by (sum-

N oF o0H 8H 8H 6H
S 22 (P, o7 3 24
J d% 5p, |kt p -+ S35 padig wvf ”f")auf
SF SF OF
5S akS+ 8 akpa+ 507 o (Uka +U, k) 8Pk (8a)
SF 8H SF 6H
+ 8893 29— (8b)
8pa “ouf E " dpp ]

Equations (1) for MVSF result immediately in Hamiltonian form 9,F =

{H,F} by substituting the variational deriva-
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tives from (7) into the Poisson bracket (8).

The Poisson bracket (8) for MVSF is the sum of two parts:
The first part (8a) represents the natural Poisson bracket (see Holm and Kupershmid

cocycle.
on the dual space associated with the Lie algebra

L,=D®[A%@(ASe AY1)].

3949

a semidirect-product piece and a generalized two-
t'? and Kupershmidt'?)

9

The symbol @ denotes the semidirect product with respect to the natural action of vector fields D on differential k-
forms A* and @, denotes direct sum over a. The corresponding commutator for this Lie algebra is given by Holm

and Kupershmidt,12

[(X;f38a;0%, (X;F380;0 ) ]=([X, X ;X(f)

—X(f)X(8,)—X(ga); X(0%)

—X(6%) . (10)

Dual coordinates on the Lie algebra L, in (9) are P dual to X €D; S to f €A’ p, to g, EAY; and v* to °€ Ay L.
The second part of the MVSF bracket (8b) (the p, —v® piece) represents the generalized two-cocycle on L,

(X;f38a50 ) =808k +6%8an -
Indeed, w, is obviously skew symmetric and satisfies

ol([(X; - ) (X; )], (X; -+

01((X;f;84;60%),

) +c.p.~0,

(11)

(12)

where c.p. stands for cyclic permutation of the unadorned quantities in (12) with those having a single overbar and a
double overbar, the ellipses refer to the elements acted upon by vector fields X, X, and X, and the equivalence relation

a ~b means
(a—b)E Y Imd /dx*
k

(see Kupershmidt,'* Chap. viii).

(Xi&a,i k+ (X0

_iigal 6 “G-Saxk,s

~(X;8q, .-G‘ik +c.p.)— (X84, 0%k +c.p.)—
+[X:(0

sga 1) +C-P- ]+(Xi§z§a,ki+c‘p _[X

To show that (12) holds, use (10) to express the left-hand side of (12) as

—(X,;6%),; + 65X, 18,k +C.P-

(X;6 %8 a,xi +c-p-)

6%8,:)s+c.p.-1=0. (13)

Remark A. For any a, if curl v¥*=0 initially, it remains so. Thus, the potential flows v¥*=V¢@* form an invariant

subsystem of (la)—(1d).

=_de

(P9, +8kP)

oF OF

S
+ SSak + 5 505

a a
kPRt o 8¢" ¢

SF BH _
8¢* dpq

SH &F
8¢* 6p,

The Poisson bracket (8') is the sum of a semidirect-
product piece (8a’) and a symplectic two-cocycle piece

(8b’). The semidirect-product piece. is associated with
the dual of the Lie algebra [cf. (9)]
Li=D@E[A%(A%e AY)]. 9"
a

Dual coordinates on the Lie algebra L] in (9') are the
same as for the Lie algebra L, in (9), except that the
superfluid velocity potential ¢* is dual to the elements
AY (densities). Notice that the formula v*=V¢“ is dual
to the homomorphism for Lie algebras

Ide[lde(Id, ® dg)): L,—L} ,
a

where Id denotes the identity and d denotes exterior

+Sa,8—S

For this subsystem, the Poisson bracket (8) becomes (in the case when curl v*=0 for all a)

o0H
+pdi 5, — '
PpYi ¢ 8¢a
SH ,
5P, (8a’)
(8b")
[
differentiation.

Remark B. The above interpretations of dual coordi-
nates are physically natural: p and S are densities, and
so are dual to O-forms A% v? are components of the cir-
culation 1 forms v®=vfdx’, which are dual to (N —1)
forms, AV ~!; and P is a momentum per unit volume (1-
form density) and, so, is dual to vector fields. See, e.g.,
Holm and Kupershmidt,lz‘” Holm, Kupershmidt, and
Levermore,'®> Marsden, Ratiu, and Weinstein,!® and vari-
ous articles in Marsden!” for further examples, refer-
ences, and discussions of the Lie algebraic interpreta-
tions of Poisson brackets in ideal hydrodynamics.

MULTIVELOCITY SUPERFLUID PLASMA (MVSP)

Equations (la)-(1d) and their associated Poisson
bracket (8) for the multivelocity superfluid (MVSF) mod-
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el can be generalized to the case of a multivelocity
superfluid plasma (MVSP), in which some of the conden-
sates are charged (e.g., neutrons and protons) and in-
teract electromagnetically with another, additional,
charged normal component (the electrons). In this case,
four new variables are added: A, the vector potential of
the electromagnetic field; D, the electric displacement
vector; g, the electron mass density; and M, the electron
momentum density, related to the electron fluid velocity,
mass density, and vector potential by minimal coupling,
ie.,

M=p5(vVv+aA), (14)

where @ is the electron charge-to-mass ratio, which is
negative. The total momentum density becomes

P=3P,+pv,+ > ap, A, (15)
a a

where, as before, p=3 p, is the total mass density of

condensates, and a® (without tilde) is the charge-to-mass

ratio of species a. (Of course, a“ vanishes for any un-

charged species.) Likewise, we define altered circulation

components for the condensates,
u?=vi+a%A , (16)

J

1

- f de

2

+ [P_ E Pa-pvn - ZaaPaA
a

a

+ [curlH—ﬁﬁV— S a“(Py+pavy,)
a

8V, +V-SM+[— 15 2 +E(p)

5 A
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according to the minimal-coupling hypothesis for the
charged superfluid species.

The total energy for the MVSP system becomes [cf.
Eq. (6)]

H= dex —lpvi+ [P——Za“paA]-v,,

+€&(S, {pa}, {VP}) +—-|1VI apA|?

2%

+%() +epu( A,D) (17)

where the energy densities €, €, and g, satisfy the iden-
tities [cf. Eq. (2)]

de=TdS+ > (u“dp,)+ > Py (du®*—a®d A—dv,),

18
de=p ’pdp, degy=curlH-d A+E-dD , (1s)
with p the electron pressure, H the magnetic field inten-
sity, and E the electric field. In component notation in
N dimensions, curlH-d A in (18) is given by H,; ;dA4,,
with H;; on antisymmetric tensor. The variational
derivatives of the Hamiltonian H in (17) are obtained
with the help of (18) from the expression

S (u—tvl—a®A-v,)8p,+T8S+ 3 (P, 8u®)+v, 8P

—av- A]185+E-8D

(19)

The equations of motion for the superfluid plasma system can now be written as a Hamiltonian system, by extend-

ing the Poisson bracket (8) to the form

6H SH 6H
— [ d™x (P S )
f ka +ak )SPk + a, 5S —|—pﬁa (aku E) )Suf
SF SF SF 5H
—=0,S+—-—23 0; +uf P 20
+ 5S S+ 8/) kPat Su, —(u Uk z+u1k) SPk (20a)
+ |2 g9, 2 8F e, 2L (20b)
800 o buf " dpp
SF S5H 8H SF SH
+—— |(M; 0, +3,M;) +p0;— |+ ——0p—= (20c)
5M, l KOO s, TP 55 P si1,
6F 8H O0F &H
- — - , (20d)
84; 8D' 8D’ 84,
[
whose Lie-algebraic nature will be discussed later in Eq. 9,pq=—div(P,+p,v,), a=1,2,...,m (21a)
(26). .
On substituting the functional derivatives from (19) 9,§=—div(Sv,), (21b)
into the Poisson bracket (20), we find the following sys- o @ 1.2 . Ive
tem of equations for the multivelocity superfluid plasma ~ 9V' = — V(p% =30, +v%v,)+v, Xcurlv
(MVSP): a“(E+v,XB), (21c)



36 SUPERFLUID PLASMAS: MULTIVELOCITY NONLINEAR . .. 3951

9, A=—E, 21d)
o, D=curlH—apv— ¥ a*(P,+p,v,) » (21e)
8,p= —div(pv) , 210
8,0, =aE;,—p P, —0 v +av KA — A 1g)
3,(P,+ M, + DA, ;)= —d,7F, (21h)

where the momentum flux tensor 7% is now given by

[writing egy =+(E-D+B-H)]
mf=[p+p+HE-D—B-H)18F+ufPf+Puvi+Mv* .
(22)

The dynamical equation for the electrons [obtained using
Egs. (18), (19), and (20¢)],

M, =—3,p—(M7") , —M; 5%, (23)

has been used with definition (14) and Eq. (21d) to obtain
the electron velocity equation (21g).

The MVSP equations (21a)—(21c) and (21h) extend the
previous MVSF equations (la)-(1d) by modifying the
motion equations (21c) of the charged condensates to in-
clude the Lorentz force and modifying the total momen-
tum in (21h) and momentum flux tensor in (22) to in-
clude the contributions from the electrons and the elec-
tromagnetic field. The other MVSP Egs. (21f)-(21g)
provide the hydrodynamics of the electrons, while Egs.
(21d)-(21e) give the Maxwell dynamics of the elec-
tromagnetic fields D and A, with charge current density
given by

J=apVv+ > a®(P,+p,v,) . (24)
a

The dynamical system (21a)—(21h) preserves the static
Maxwell equations, with B=curl A,

divD=apg+ > a, , (25a)
a

divB=0 . (25b)

Consequently, Egs. (25a) and (25b) can be taken as initial
conditions.

The Poisson bracket (20) is the sum of four parts: the
semidirect-product piece (20a) with generalized two-
cocycle (20b) as in (8); another semidirect-product piece
(20c) for M and p; and the canonical D— A bracket
(20d). Except for the two-cocycles (20b) and (20d) (the
pe—u® and D— A pieces), the bracket (20) may be asso-
ciated to the dual of the Lie algebra

L,=L,eDOA’=[D®A’%@A%e A, )]e[DOA],

(26)

where L, is given by (9), and dual coordinates on L, are
the same as before except that v is now named u% and
on the second summand D ®A® in (26), dual coordinates
are M dual to D and g dual to A°.

SUPERFLUID HALL
MAGNETOHYDRODYNAMICS (SHMHD)

A magnetohydrodynamic approximation including
Hall current effects can be developed from the MVSP
equations (21a)—(21h), as follows. Specializing to the
case of only one charged condensate for a=1, we have
(with Kronecker delta 8f)

a®*=abdf, 27

in (21c), (21e), (24), and (25a).
Neglecting the electron inertia, we may set (1/a)=0
in (21g) and use (21d) to find, in vector notation,

3, A=VXB . (28)

Thus, the magnetic field B=curl A in this approxima-
tion is frozen into the electron fluid. The electron fluid
velocity ¥V is expressible by using (24) for the current
density and defining i=ap to be the electron charge

density as
V=1 [J—a(P,+pv,)] with i=ap . (29)

Thus (28) implies Ohm’s law for a multivelocity
superfluid with one charged condensate moving across a
magnetic field in an electron background, namely,

api P o —1
3 A=—E=— |— |v,XB+# " IXB—an ~'P;XB.

(30)

The second term on the right-hand side of (30) is the
classical drift field due to the Hall effect, while the last
term is an additional, superfluid, drift field due to elec-
tromagnetic coupling of the charged condensate with the
normal fluids. The diamagnetic drift due to electron
pressure gradient has been neglected, since it contributes
nothing to the other motion equations for SHMHD.

Neglecting relativistic effects, we now set B=yoH and
D=¢€E and take the limit as €e—0. Hence (2le) and
(25a) become

J:,uo_lcurlB s (31
and
A+4ap,=0, (32)

respectively. Summing the continuity equation (21a) for
a=1 with (21f), and using (29) gives

3,(ap,+7)=0, (33)

so that local charge neutrality, expressed in (32), may be
taken as an initial condition that is subsequently
preserved. The Lorentz force in (21c) then becomes

a(E+v, XB)=p; 'IxB—ap;'P;xB . (34)

The terms on the right-hand side of (34) constitute the
Hall drift forces produced by the charged condensate
current.

The equations of superfluid Hall magnetohydro-
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dynamics (SHMHD) may now be collected, after using
ap,/fi=—1 and taking the limit e—~0 in (21h),

DARRYL D. HOLM AND BORIS A. KUPERSHMIDT 36

=(p +B?*/2uy)8/ —ug 'B;B’

+(P;—ap, A4; )U,{+ > U,ﬁPj R (36a)
3ipa=—divipav, +P;) , (35a) B
- 1
3,5 = —div(Sv,) , (35b) B=curlA, J=uo curlB, (36b)
P—ap, A=3SP
3, vi=v, Xcurlv® — V(u®— Lp2 4 vov,) api § atPVn (36¢)
+(p1_’J><B—apflP1><B)8‘{‘ R (35¢) We now state the main result of this section in the fol-
1 1 1 lowing Proposition.
3, A=(v,+pi'P,—a " p7'T)XB, (35d) Proposition. The SHMHD equations (35a)—(35e) form
3,(P;—ap A;))=—1i; (35¢) an invariant subsystem of the Hamiltonian system con-
o P o sisting of Hamiltonian [with B;;= A4, ; — A4, ;, and ¢ satis-
with fying (2)]
J
1
H= [ d% —%pv,f—i—(P—aplA)-v,,—l—e(S,{pa},[vﬂ})+EBU-BU , (37)
and Poisson bracket
OF 6H 5H SH
H,F}=— | d~ P9, S3 + (A ul—uf,
{H,F} [ d¥ 5P, |FROi TP S p+ ,8S+pﬁa + (3 u u5,>8u£]
SF S8F SF 5H
SSakS+a 8kp3+(3 a( €0 +ufy) —8Pk (38a)
8F 580, O BH SF 8“8 8H (38b)
Pa Su E 8[)3
OF SH SH 8F . 8H
9;,—— +7A YA, —A, ) —— — 38
o4, % en T (A x k")SAk o7 Ok 54, (38c)

Proof. This proposition may be proven by first substituting the following easily verified expression for the variation-

al derivatives of H in (37),

= [ dVx[(u*—1v}—ad{ A, )8p,+T 85+ 3 P, -6u’+v, 8P

+(ug 'curlB—aP,—ap,v,)-8§ A+(P— S P,
a

into the Poisson bracket (38). Next, combining the re-
sulting Hamiltonian equations for p; and 7 yields preser-
vation of the local neutrality relation (32) via (33). Elim-
inating 7 from these Hamiltonian equations finally re-
covers the HMHD system (35a)—(35e). This calculation
proves the Proposition.

Remark. The Poisson bracket (38) is the sum of three
parts: the semidirect-product piece (38a) with general-
ized two-cocycle (38b) as in (8); and another semidirect-
product piece (38c) for # A and 7. Except for the gen-
eralized two cycle (38b), the bracket (38) is again associ-
ated to the dual of the Lie algebra L, in (26), but with a
reinterpretation of dual coordinates. For SHMHD, on
the second summand of (26) the dual coordinates are:
i A dual to D, and 7 dual to A°. Hall magnetohydro-
dynamics for normal fluids is discussed from a Hamil-
tonian viewpoint in Holm.!®

—pv,—ap;A)-év,], (39)

SUPERFLUID MAGNETOHYDRODYNAMIC (SMHD)
APPROXIMATION OF MVSP

A magnetohydrodynamic approximation for the mul-
tivelocity superfluid plasma equations can be obtained
from the SHMHD equations (35) by neglecting the Hall
drift forces on the right-hand side of (34). The resulting
system of SMHD equations becomes, with B=curl A in
vector notation,

9,pe=—div(P,+p.v,), a=1,2 (40a)
3,8 = —div(Sv,) , (40b)
9,vi=—V(u*—lvl+v, v*)+v, Xcurlv®, (40c)
d,P;=—9d 7k, (40d)
d,B=curl(v,, XB) , (40e)
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where, now, the stress tensor in (40d) for SMHD is given
by

p+—1 B?

2 8 +(Pvf+Pf—B,B*) .

(41)

The system of SMHD equations (40a)—
the total energy

(40e) preserves

3953
H= fdx —1pv 24PV, +e+— ! B;B; |, 42
" 4p u
with P=P,+P,+pv, and p=p;+p,. Consequently,

this system is also a candidate for Hamiltonian formula-
tion.

In fact, Egs. (40a)-(40e) for SMHD do comprise a
Hamiltonian system, with Hamiltonian (42) and the fol-
lowing Poisson bracket:

[HE == f 4 5P, |(FrOiT O )86PHk +Sa‘§+pﬁa g (akviﬁ“vf,i)gTI;]
+ %ﬁ—akSJr%akpaJrff;(vfaiJrvfm Mz 3
" 5pa 868"55 s 0 gf (43b)
+ SI:( B +3,By+3, Bj,);; +8—;i—[(Bm,k+Bk,a +Bmka,)5H , @30)

associated with the dual space of the following Lie alge-
bra:

Li=DR[A’(A%e AY HeAV2]. (44)
a

We see that L; for SMHD differs from L, in (9) for
MVSF by the presence of an extra piece, AY ~2: the
dual coordinates to this AY =2 are the N(N —1)/2 quan-
tities B;; in (43c); the two-cocycle piece in (43b) is the
same as in (8b). In three dimensions, in terms of mag-
netic field B=curl A, or B'=¢"*B; with e’* totally an-
tisymmetric, the piece (43c) of the Poisson bracket is ex-
pressible as

— [ % | 2E (pia, —a, B s)) 2L
6B
+ ;Bl<ak3'_5'3 3, )STH . @3
k

where the magnetic field B', i =1,2,3, being a flux (i.e., a
2-form) in three dimensions is dual to 1-forms A!. The
SMHD equations (40a)-(40e) are given in Hamiltonian
form by 9,F={H,F} using Poisson bracket (43), with
FE€{pyS,v?,P,B;;} and H given in (42). This may be
verified directly by substituting the variational deriva-
tives of H obtained from

8H = dex[z(,u“—%vf)Spa—f—TSS—# S P, 5v°

a

4v,-8P+ lp— S P,—pv, |-ov

+(2uo)~'B;;8B;; ] 45)

into the Poisson bracket (43). In three dimensions, the
last term in the integrand of (45) becomes B-8B/u,
when expressed in terms of the magnetic field.

GENERALIZED KELVIN THEOREMS
FOR SUPERFLUIDS

The interactions among the normal fluid and the
superfluid condensates in MVSF, MVSP, SHMHD, and
SMHD result in a generalized Kelvin theorem for each
theory. These generalized Kelvin theorems show that
the total circulation for each superfluid species is frozen
into the normal-fluid motion. For example, in the case
of MVSP, we obtain from (21c) and (21d) the following
relation:

(8, +L, Nv¥+a®A)dx=—d(p®—Lv;—a,-A),

2
(46)

where Lv"

normal velocity v,. Hence, the circulation loop integral
for each superfluid species,

ﬁy(,)(v“—i—a“A)-dx ,

is conserved for every closed curve y(t) moving with the
normal fluid. Let C¢ be the superfluid circulation 1-
form for species a

denotes the Lie derivative with respect to the

(47)

C=C*%dx=(v*+a®A)dx . (48)
Then (46) is expressible more compactly as
(8, +L, )C*=—dB“, (49)
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where B® is the Bernoulli function on the right-hand
side of (46). A brief calculation using (49) and the chain
rule gives

(8, +L, NC*NdC*)=—d(B*dC?) (no sum on a),

(50)
or, in components in three dimensions,
9,(C%curl C%)
= —div[v,(C*curl C%)
+B%urlC*] (no sum on a) . (51)

Therefore, the helicity in three dimensions for each
superfluid species, namely,

A= f d*x C%curlC* (no sum on a) , (52)
D

is conserved, provided the following boundary condition
is satisfied:

[(C*curl C*)v, +B%url C*]-1i | 3p =0 . (53)

Subject to this boundary condition, the superfluid helici-
ty A% is a Casimir for the MVSP Poisson bracket (20);
that is, A® has vanishing Poisson brackets with every
MVSP dynamical variable. Consequently, A% would be
conserved for any Hamiltonian expressible in terms of
these variables. The helicity A” in (52) represents the
number of linkages of the vortex lines for species a in
the domain of flow D. [See, e.g., Moffat!® for further
discussion of helicity in ordinary fluid mechanics and
magnetohydrodynamics (MHD).]

The generalized Kelvin theorem (46) and conserved
helicity (52) for MVSP reduces to the corresponding re-
sults for MVSF when a“=0 for all a. Remarkably, the
magnetohydrodynamic approximations SHMHD and
SMHD also admit an additional conserved quantity, the
magnetic helicity, in three dimensions

Amag = fD d3x A-curl A, (54)

which is plainly a Casimir for the SHMHD Poisson
bracket (38c). For SMHD, the Poisson bracket (43) can
be expressed using the vector potential A as a dynami-
cal variable by replacing (43c) by

v | 8F | 8H
fd x 5P [(ajA,.;Ajy,)(SAj
-+ 6 (Aja,-}—A,yj) 6 (430“)

54, 5P; |’

for which A4;, i=1,2,...,N, is dual to (N —1)-forms,
AY 1. Consequently, one finds by using (45) the vector-
potential SMHD dynamics
3, A;={H, A} [by (437¢)]

:_(vn-A),i+(Aj,i_Ai,j)vr{ . (55)

Therefore, in three dimensions we have for SMHD

d,( A-B)= —div[( A-B)v, ], (56)
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so that the magnetic helicity Ap,, in (54) is conserved for
SMHD, as well, provided the normal fluid velocity v, is
tangential to the boundary. Note the similarity between
the roles played by the superfluid velocities v* and the
magnetic vector potential A in the Poisson brackets
(43a) and (43c”), respectively. [Both v* and A are dual
to (N —1)-forms.] In fact, using the three-dimensional
curl of Eq. (40c) gives

9, (v®-curl v¥)= —div[(v¥-curl v¥)v,,
+(u*—Ltv})curl v@]
(no sum on a) . (57)
Thus, SMHD also conserves the superfluid helicity

A= f d3x v*-curlv® (no sum on a) , (58)

provided the term in square brackets in (57) is tangential
to the boundary, [cf. (53)]. Subject to this boundary con-
dition, the superfluid helicity A* in (58) is also a Casimir
for both the SHMHD and SMHD Poisson brackets.

CONCLUSION

We have presented four nonlinear hydrodynamic
theories describing nondissipative multicondensate solu-
tions of superfluids, both charged and uncharged, and
found the Hamiltonian structure for each theory. The
multivelocity hydrodynamic equations for uncharged
superfluid condensates in the density formulation (rather
than the density matrix formulation proposed by An-
dreev and Bashkin!) are shown to possess a noncanonical
Hamiltonian formulation. The Poisson bracket in this
Hamiltonian formulation of MVSF is not symplectic:
rather, it is associated to the dual space of the Lie alge-
bra L, in (9) of semidirect-product type. The geometri-
cal interpretations of the hydrodynamic superfluid vari-
ables as dual coordinates to this Lie algebra are physical-
ly natural: mass and entropy densities are dual to func-
tions; superfluid circulation 1-forms are dual to (N —1)
forms in N dimensions; and the covector total momen-
tum density is dual to vector fields. The induced drag
interaction discovered in Andreev and Bashkin! and
caused by relative motion among the superfluids arises in
the present context via a generalized two-cocycle on the
Poisson bracket. The total mass current density of the
condensates then equals the total momentum density,
ie.,

d,p=—divP with p= 3 p, and P=pv,+ S P, .

(59)

The superfluid circulation for each species in the
MYVSF theory is frozen into the normal fluid, as can be
seen from the generalized Kelvin theorem for MVSF
written in geometric form,

(8, +Ly Nv¥dx)=—d(u*—1v]), (60)

which is simply Eq. (1d) in vector notation. Hence the
superfluid vortex lines are frozen into the normal fluid,
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as seen by taking the exterior derivative of the general-
ized Kelvin theorem (60), or by taking the curl of (1d).
In three-dimensional vector notation, this superfluid vor-
ticity equation becomes

9, (curl v¥)=curl(v, X curl v¥) . (61)

Consequently, the superfluid helicity for each species in
a finite domain of flow D, namely

A= fD d>*x v®-curl v¢* (no sum on a) (62)

is readily shown to be conserved, provided the following
boundary condition is satisfied:

a

[(v®-curl v¥)v, +(u®— Lo} )curl v¥]-4 | 5p

=0 (nosumona). (63)

The superfluid helicity A% in (62) is a Casimir for the
MYVSF Poisson bracket (8), in the sense that

(A%, G} =0, VG(P,S,p,,v®) . (64)

That is, the helicity A® Poisson commutes with all of the
MYVSF dynamical variables and, so, would be conserved
for any Hamiltonian expressible in these variables. The
helicity A* may also be interpreted geometrically as a
winding number, representing the number of linkages of
vortex lines for superfluid species a in the three-
dimensional domain of flow D.

The MVSF theory reduces to the standard equations
of ideal adiabatic hydrodynamics for a normal fluid
when v¥=v, (so that all the fluids move together) and
the generalized two-cocycle associated to (8b) in the
Hamiltonian structure is absent. The Hamiltonian struc-
ture of MVSF is also given for the irrotational case in
(8'). In the case of irrotational MVSF, the Hamiltonian
structure is associated to the dual of the semidirect-
product Lie algebra L in (9') with a symplectic two cy-
cle between the condensate mass densities and corre-
sponding superfluid velocity potentials.

Following this Hamiltonian pattern, we have general-
ized the MVSF theory to describe a multivelocity
superfluid plasma (MVSP) in which some of the conden-
sates are charged and interact electromagnetically
among themselves and with an additional charged nor-
mal fluid (electrons). This generalization has been ac-
complished via the minimal-coupling hypotheses (14)
and (16), along with alteration of the Hamiltonian to in-
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clude the electronic and electromagnetic energies in (17).
The MVSP theory extends the MVSF equations by
modifying the motion equations for the charged conden-
sates to include the Lorentz force and modifying the to-
tal momentum [see (21h)] and momentum flux tensor
(22) to include contributions from the electrons and the
electromagnetic field. Additional MVSP equations pro-
vide the hydrodynamics of the electrons and the
Maxwell dynamics of the electromagnetic field. The
electromagnetic coupling of the charged condensates
with each other and with the normal electron fluid re-
sults in the drag-current density given in (24). The
Hamiltonian structure of MVSP is associated to the dual
space of the semidirect-product Lie algebra L, in (26)
with two-cocycles associated to (20b) and (20d).

The Hamiltonian framework established here allows
various extensions: to relativistic equations, for exam-
ple, and to equations for superfluid plasmas either with
internal spins and orbital angular momentum (see Holm
and Kupershmidt!¥), or with Yang-Mills internal degrees
of freedom (Gibbons, Holm, and Kupershmidtzo). One
can expect great richness of behavior from such systems
combining the attributes of both superfluids and plasma
dynamics.

Finally, we have developed two superfluid magnetohy-
drodynamic approximations of the MVSP theory: one
approximation includes the Hall effect (SHMHD) and
one neglects it (SMHD). In each case, the Hamiltonian
structure for the approximate theory has been estab-
lished and associated to the dual space of a semidirect-
product Lie algebra. Remarkably, the two magnetohy-
drodynamic theories have essentially the same Hamil-
tonian, but have radically different Poisson brackets.
For SHMHD, the superfluid contribution to the Hall
drift force is identified explicitly in (34).

Each of the four superfluid theories discussed here is
Hamiltonian and possesses an associated generalized
Kelvin theorem, exemplified for MVSP in (46), and addi-
tional conservation laws—exemplified by the MVSP hel-
icities A® in (52)—which are Casimir operators for the
corresponding Poisson bracket (20).

ACKNOWLEDGMENT

One of us (D.H.) happily acknowledges a helpful dis-
cussion of this material with Seth Putterman.

1A. F. Andreev and E. P. Bashkin, Zh. Eksp. Teor. Fiz. 69, 319
(1975) [Sov. Phys.—JETP 42, 164 (1976)].

2]. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 32, 653 (1957) [Sov.
Phys.—JETP 5, 542 (1957)]; Zh. Eksp. Teor. Fiz. Pisma.
Red. 17, 534 (1973) [JETP Lett. 17, 386 (1973)].

3Z. M. Galasiewicz, Phys. Lett. 43A, 149 (1973); Phys. Konden.
Mater. 18, 141, 155 (1974).

4V. P. Mineev, Zh. Eksp. Teor. Fiz. 67, 683 (1974) [Sov.
Phys.—JETP 40, 338 (1975)].

5G. E. Volovik, V. P. Mineev, and I. M. Khalatnikov, Zh.

Eksp. Teor. Fiz. 69, 675 (1975) [Sov. Phys.—JETP 42, 342
(1976)].

6V. A. Ambartsumyan and G. S. Saakyan, Astron. Zh. 37, 193
(1960) [Sov. Astron. 4, 187 (1960)].

7V. L. Ginzburg, Usp. Fiz. Nauk 103, 393 (1971) [Sov.
Phys.—Usp. 14, 83 (1971)].

8D. N. Lowy and C.-W. Woo, in Proceedings of the 14th Inter-
national Conference on Low Temperature Physics, Finland,
1975, edited by M. Krusius and M. Vuorio (North-Holland,
Amsterdam, 1975), Vol. 5, p. 461.



3956

9A. F. Andreev and I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 56,
2057 (1969) [Sov. Phys.—JETP 29, 1107 (1969)].

10B. T. Gelikman, Fiz. Tverd. Tela (Leningrad) 15, 3293 (1973)
[Sov. Phys.—Solid State 15, 2194 (1974)].

G, A. Vardanyan and D. M. Sedrakyan, Zh. Eksp. Teor. Fiz.
81, 1731 (1981) [Sov. Phys.—JETP 54, 919 (1981)].

12D, D. Holm and B. A. Kupershmidt, Physica D (Utrecht) 6,
347 (1983).

3B, A. Kupershmidt, Discrete Lax Equations and Differential-
Difference Equations, (Asterique, Paris, 1985), Vol. 123.

14D, D. Holm and B. A. Kupershmidt, Phys. Lett. 91A, 425
(1982).

DARRYL D. HOLM AND BORIS A. KUPERSHMIDT 36

15D, D. Holm, B. A. Kupershmidt, and C. D. Levermore,
Phys. Lett. 98A, 389 (1983).

16, E. Marsden, T. Ratiu, and A. Weinstein, Trans. Am.
Math. Soc. 281, 147 (1984).

VContemporary Mathematics, edited by J. E. Marsden (Ameri-
can Mathematics Society, 1984), Vol. 28.

18D, D. Holm, Phys. Fluids 30, 1310 (1987).

19H. K. Moffat, Magnetic Field Generation in Electrically Con-
ducting Fluids (Cambridge University Press, Cambridge,
England, 1978).

20J. G. Gibbons, D. D. Holm, and B. A. Kupershmidt, Phys.
Lett. 90A, 281 (1982); Physica D (Utrecht) 6, 179 (1983).



